什么是图的负权?
一、什么是图的负权
图的负权(Negative Weight)是指图中存在一些边的权重为负数。一般情况下,人们认为图中边的权重是正数,实际上,在图论中,图中边的权重的范围是实数,因此,图中边的权重也可以为负数。通常,图的负权会对一些问题、算法产生影响。
例如,假设我们需要在一个城市的街道网络上规划一条最短路径从A地到达B地,在该城市的街道网络示意图中,边上的数字表示该街道的长度。但是,由于工程施工的原因,有一条街道的长度为负数(-4),如果我们使用Dijkstra算法来找到从A到B的最短路径,算法将会产生错误的结果,因为它不能处理带有负权的图。但是,如果我们使用Bellman-Ford算法,它可以正确地找到从A到B的最短路径,并考虑到AB路段的负权值。
二、什么是图
图是一种比线性表和树更复杂的数据结构,在图中,结点之间的关系是任意的,任意两个数据元素之间都可能相关。图是一种多对多的数据结构。
1、基本概念
图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
注意:线性表中可以没有元素,称为空表。树中可以没有结点,叫做空树。但是在图中不允许没有顶点,可以没有边。
基本术语:
无向边:若顶点Vi和Vj之间的边没有方向,称这条边为无向边(Edge),用(Vi,Vj)来表示。无向图(Undirected graphs):图中任意两个顶点的边都是无向边。有向边:若从顶点Vi到Vj的边有方向,称这条边为有向边,也称为弧(Arc),用来表示,其中Vi称为弧尾(Tail),Vj称为弧头(Head)。有向图(Directed graphs):图中任意两个顶点的边都是有向边。简单图:不存在自环(顶点到其自身的边)和重边(完全相同的边)的图。无向完全图:无向图中,任意两个顶点之间都存在边。有向完全图:有向图中,任意两个顶点之间都存在方向相反的两条弧。稀疏图:有很少条边或弧的图称为稀疏图,反之称为稠密图。权(Weight):表示从图中一个顶点到另一个顶点的距离或耗费。网:带有权重的图。度:与特定顶点相连接的边数。出度、入度:有向图中的概念,出度表示以此顶点为起点的边的数目,入度表示以此顶点为终点的边的数目。环:名列前茅个顶点和最后一个顶点相同的路径。简单环:除去名列前茅个顶点和最后一个顶点后没有重复顶点的环。连通图:任意两个顶点都相互连通的图。极大连通子图:包含竟可能多的顶点(必须是连通的),即找不到另外一个顶点,使得此顶点能够连接到此极大连通子图的任意一个顶点。连通分量:极大连通子图的数量。强连通图:此为有向图的概念,表示任意两个顶点a,b,使得a能够连接到b,b也能连接到a 的图。生成树:n个顶点,n-1条边,并且保证n个顶点相互连通(不存在环)。最小生成树:此生成树的边的权重之和是所有生成树中最小的。AOV网(Activity On Vertex Network):在有向图中若以顶点表示活动,有向边表示活动之间的先后关系。AOE网(Activity On Edge Network):在带权有向图中若以顶点表示事件,有向边表示活动,边上的权值表示该活动持续的时间。2、图的存储结构
由于图的结构比较复杂,任意两个顶点之间都可能存在关系,因此用简单的顺序存储来表示图是不可能,而若使用多重链表的方式(即一个数据域多个指针域的结点来表示),这将会出现严重的空间浪费或操作不便。这里总结一下常用的表示图的方法:
邻接矩阵
图的邻接矩阵(Adjacency Matrix)存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(称邻接矩阵)存储图中的边或弧的信息。
代码:
/** * 有向图的邻接矩阵实现 */public class Digraph { private int vertexsNum; private int edgesNum; private int[][] arc; public Digraph(int[][] data, int vertexsNum) { this.vertexsNum = vertexsNum; this.edgesNum = data.length; arc = new int[vertexsNum][vertexsNum]; for (int i = 0; i < vertexsNum; i++) { for (int j = 0; j < vertexsNum; j++) { arc[i][j] = Integer.MAX_VALUE; } } for (int i = 0; i < data.length; i++) { int tail = data[i][0]; int head = data[i][1]; arc[tail][head] = 1; } } //用于测试,返回一个顶点的邻接点 public Iterable adj(int vertex) { Set set = new HashSet<>(); for (int i = 0; i < vertexsNum; i++) { if (arc[vertex][i] != Integer.MAX_VALUE) set.add(i); } return set; } public static void main(String[] args) { int[][] data = { {0,3}, {1,0}, {1,2}, {2,0}, {2,1}, }; Digraph wd = new Digraph(data,4); for(int i :wd.adj(1)) { System.out.println(i); } }}
优缺点:
优点:结构简单,操作方便。缺点:对于稀疏图,这种实现方式将浪费大量的空间。邻接表
邻接表是一种将数组与链表相结合的存储方法。其具体实现为:将图中顶点用一个一维数组存储,每个顶点Vi的所有邻接点用一个单链表来存储。这种方式和树结构中孩子表示法一样。
代码:
/** * 有向图的邻接表实现 * */public class AdjListDigraph { private class EdgeNode { int index; EdgeNode next; EdgeNode(int index, EdgeNode next){ this.index = index; this.next = next; } } private class VertexNode { int id; EdgeNode headNode; } private VertexNode[] vertexs; private int vertexsNum; private int edgesNum; public AdjListDigraph(int[][] data, int vertexsNum) { this.vertexsNum = vertexsNum; this.edgesNum = data.length; vertexs = new VertexNode[vertexsNum]; for (int i = 0; i < vertexs.length; i++) { vertexs[i] = new VertexNode(); vertexs[i].id = i; // } for (int i = 0; i < data.length; i++) { int index = data[i][1]; EdgeNode next = vertexs[data[i][0]].headNode; EdgeNode eNode = new EdgeNode(index,next); vertexs[data[i][0]].headNode = eNode; //头插法 } } //用于测试,返回一个顶点的邻接点 public Iterable adj(int index) { Set set = new HashSet<>(); EdgeNode current = vertexs[index].headNode; while(current != null) { VertexNode node = vertexs[current.index]; set.add(node.id); current = current.next; } return set; } public static void main(String[] args) { int[][] data = { {0,3}, {1,0}, {1,2}, {2,0}, {2,1}, }; AdjListDigraph ald = new AdjListDigraph(data,4); for(int i :ald.adj(1)) { System.out.println(i); } }}
本算法的时间复杂度为 O(N + E),其中N、E分别为顶点数和边数,邻接表实现比较适合表示稀疏图。
十字链表
十字链表(Orthogonal List)是将邻接表和逆邻接表相结合的存储方法,它解决了邻接表(或逆邻接表)的缺陷,即求入度(或出度)时必须遍历整个图。
代码:
/** * 有向图的十字链表实现 * */public class OrthogonalList { private class EdgeNode { int tailVex; int headVex; EdgeNode headNext; EdgeNode tailNext; public EdgeNode(int tailVex, int headVex, EdgeNode headNext, EdgeNode tailNext) { super(); this.tailVex = tailVex; this.headVex = headVex; this.headNext = headNext; this.tailNext = tailNext; } } private class VertexNode { int data; EdgeNode firstIn; EdgeNode firstOut; } private VertexNode[] vertexs; private int vertexsNum; private int edgesNum; public OrthogonalList(int[][] data, int vertexsNum) { this.vertexsNum = vertexsNum; this.edgesNum = data.length; vertexs = new VertexNode[vertexsNum]; for (int i = 0; i < vertexs.length; i++) { vertexs[i] = new VertexNode(); vertexs[i].data = i; // } //关键 for (int i = 0; i < data.length; i++) { int tail = data[i][0]; int head = data[i][1]; EdgeNode out = vertexs[tail].firstOut; EdgeNode in = vertexs[head].firstIn; EdgeNode eNode = new EdgeNode(tail,head,in,out); vertexs[tail].firstOut = eNode; vertexs[head].firstIn = eNode; } } //返回一个顶点的出度 public int outDegree(int index) { int result = 0; EdgeNode current = vertexs[index].firstOut; while(current != null) { current = current.tailNext; result++; } return result; } //返回一个顶点的入度 public int inDegree(int index) { int result = 0; EdgeNode current = vertexs[index].firstIn; while(current != null) { current = current.headNext; result++; } return result; } public static void main(String[] args) { int[][] data = { {0,3}, {1,0}, {1,2}, {2,0}, {2,1}, }; OrthogonalList orth = new OrthogonalList(data,4); System.out.println("顶点1的出度为" + orth.outDegree(1)); System.out.println("顶点1的入度为" + orth.inDegree(1)); }}
十字链表创建图算法的时间复杂度和邻接表相同都为O(N + E)。在有图的应用中推荐使用。
延伸阅读1:图的遍历方法有哪些
深度优先遍历:深度优先遍历(Depth First Search,简称DFS),也成为深度优先搜索。广度优先遍历:广度优先遍历(Breadth First Search,简称BFS),又称为广度优先搜索。猜你喜欢LIKE
相关推荐HOT
更多>>为什么要读JVM规范?
一、深入理解Java程序的工作原理阅读JVM规范可以帮助开发者深入了解Java程序的工作原理。JVM规范详细描述了Java程序编译、加载、解释和执行的过...详情>>
2023-10-18 23:44:39开发一款商城系统APP有什么优势?
一、开发一款商城系统APP的优势1、提供便捷的购物体验商城系统APP使消费者能够随时随地通过移动设备浏览和购买商品。用户可以轻松浏览产品目录...详情>>
2023-10-18 20:20:29为什么说Python适合写爬虫?
一、Python适合写爬虫的原因1、简洁性和易用性Python是一门简洁、优雅的编程语言,具有直观的语法和易于阅读的代码结构。相对于其他编程语言,P...详情>>
2023-10-18 19:57:52npm install –global、–save、–save-dev的区别?
一、npm install –global、–save、–save-dev的区别1、执行环境不同npm install –global:任意地方打开shell窗口皆可执行(前提npm是全局安...详情>>
2023-10-18 19:02:21热门推荐
为什么要读JVM规范?
沸什么是脏读、不可重复读、幻读?
热wos里的核心合集和所有数据库有什么区别?
热数据库应该怎么设计比较好?
新Navicat和Dbeaver有什么区别?
Android系统开发做什么?
selectdb和starrocks是什么关系?
开发一款商城系统APP有什么优势?
为什么说Python适合写爬虫?
到底为什么要用IoC和AOP??
npm install –global、–save、–save-dev的区别?
iOS Swift func,class func,@objc func的区别?
到底什么是csrf攻击,原理是什么?
JavaScript能达到什么效果?